Gradient Methods for Stackelberg Security Games

نویسندگان

  • Kareem Amin
  • Satinder Singh
  • Michael Wellman
چکیده

Stackelberg games are two-stage games in which the first player (called the leader) commits to a strategy, after which the other player (the follower) selects a best-response. These types of games have seen numerous practical application in security settings, where the leader (in this case, a defender) must allocate resources to protect various targets. Real world applications include the scheduling of US federal air marshals to international flights, and resource allocation at LAX airport. However, the best known algorithm for solving general Stackelberg games requires solving Integer Programs, and fails to scale beyond a few (significantly smaller than 100) number of leader actions, or follower types. In this paper, we present a new gradient-based approach for solving large Stackelberg games in security settings. Large-scale control problems are often solved by restricting the controller to a rich parameterized class of policies; the optimal control can then be computed using Monte Carlo gradient methods. We demonstrate that the same approach can be taken in a strategic setting. We evaluate our approach empirically, demonstrating that it can have negligible regret against the leader’s true equilibrium strategy, while scaling to large games.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gradient Methods for Stackelberg Games

Stackelberg games are two-stage games in which the first player (called the leader) commits to a strategy, after which the other player (the follower) selects a best-response. These types of games have seen numerous practical application in security settings, where the leader (in this case, a defender) must allocate resources to protect various targets. Real world applications include the sched...

متن کامل

Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence, UAI 2016, June 25-29, 2016, New York City, NY, USA

Stackelberg games are two-stage games in whichthe first player (called the leader) commits to astrategy, after which the other player (the fol-lower) selects a best-response. These types ofgames have seen numerous practical applicationin security settings, where the leader (in thiscase, a defender) must allocate resources to pro-tect various targets. Real world appli...

متن کامل

Real-world security games: toward addressing human decision-making uncertainty

Game theory is a useful tool for reasoning about interactions between agents and in turn aiding in the decisions of those agents. In fact, Stackelberg games are natural models for many important applications such as oligopolistic markets and security domains. Indeed, Stackelberg games are at the heart of three deployed systems, ARMOR; IRIS; and GUARDS, for aiding security officials in making cr...

متن کامل

Efficient Algorithms to Solve Bayesian Stackelberg Games for Security Applications

In a class of games known as Stackelberg games, one agent (the leader) must commit to a strategy that can be observed by the other agent (the adversary/follower) before the adversary chooses its own strategy. We consider Bayesian Stackelberg games, in which the leader is uncertain about the type of the adversary it may face. Such games are important in security domains, where, for example, a se...

متن کامل

Security Games with Multiple Attacker Resources

Algorithms for finding game-theoretic solutions are now used in several real-world security applications. This work has generally assumed a Stackelberg model where the defender commits to a mixed strategy first. In general two-player normal-form games, Stackelberg strategies are easier to compute than Nash equilibria, though it has recently been shown that in many security games, Stackelberg st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016